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Site percolation on T

Consider the triangular lattice T. Fix p ∈ [0, 1].

Put states (τv) on the vertices: P(τv = 0) = p,
P(τv = 1) = 1− p. The states are independent.

Question: Does there exist an infinite 0-cluster (an infinite
connected component that consists only of vertices with state
0)?
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Phase transition

There exists pc ∈ (0, 1) such that

if p < pc, no infinite 0-cluster a.s.;
if p > pc, there is an infinite 0-cluster a.s.

p = pc?

Facts:

Essentially due to Kesten: pc = 1/2 on T.
When p = pc = 1/2, no infinite 0-cluster a.s.
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Dynamical percolation and exceptional times

Resample the states independently at rate 1. Write
τv(t) = the state of v at time t.

Consider the set of exceptional times

{t ≥ 0 : there is an infinite 0-cluster at time t}.

Intuitively, this set seems to be empty, but...

Garban–Pete–Schramm: this set has Hausdorff dimension
31/36 a.s.
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Another point of view

Back to site percolation.

For an infinite path γ = (v1, v2, . . .), define its passage time by

T (γ) =
∞∑
i=2

τvi .

Reformulation: Define the first-passage time to infinity

ρ = inf{T (γ) : γ is an infinite path starting from 0}.
Is ρ <∞ a.s.?

Equivalent to the original problem. Hence no if p ≤ 1/2, yes if
p > 1/2.
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A generalization

Instead of 0 and 1, we now assume (τv) are i.i.d. nonnegative
random weights. Write F (t) = P(τv ≤ t).

Recall

ρ = inf{T (γ) : γ is an infinite path starting from 0}.

Still makes sense to ask: ρ <∞ a.s.?

Can show:

F (0) < 1/2⇒ ρ =∞ a.s.
F (0) > 1/2⇒ ρ <∞ a.s.

F (0) = 1/2?
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A sharper phase transition

Theorem (Damron-L.-Wang, ’17, simplified)

If F (0) = 1/2, then ρ <∞ a.s. ⇐⇒
∞∑
k=2

F−1(1/2 + 2−k) <∞.

Here, F−1(x) = inf{t : F (t) ≥ x}.

An easy example:
τv ∼ Ber(1/2) =⇒ F−1(1/2 + 2−k) = 1 =⇒ ρ =∞ a.s.

Intuition: F−1(1/2 + 2−k) smaller =⇒ the probability that
τv ≈ 0 is higher =⇒ easier to get to infinity in finite time.
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Dynamical critical FPP

From now on, assume F (0) = 1/2.

Resample each weight independently at rate 1. Again
τv(t) := the weight of v at time t.

Define ρt = ρ at time t.

Are there exceptional times?

Two cases:

Case 1:
∑

k F
−1(1/2 + 2−k) =∞.

Exceptional times: {t ≥ 0 : ρt <∞}.

Case 2:
∑

k F
−1(1/2 + 2−k) <∞.

Exceptional times: {t ≥ 0 : ρt =∞}.
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Case 1: Hausdorff dimension

Write ak = F−1(1/2 + 2−k).

Theorem (Damron-Hanson-Harper-L., ’21)

Assume
∑

k ak =∞. Then

dimH({t ≥ 0 : ρt <∞}) =
31

36
a.s.

Generalizes the result of Garban–Pete–Schramm.
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Case 1: Upper Minkowski dimension

Theorem (Damron-Hanson-Harper-L., ’21)

Assume
∑

k ak =∞.

If kak →∞, then for any x ∈ [0,∞),

lim
s→∞

P

(
dimM({t ∈ [0, s] : ρt ≤ x}) =

31

36

)
= 1.

If lim infk kak = 0, then for any x ∈ (0,∞),

lim
s→∞

P
(
dimM({t ∈ [0, s] : ρt ≤ x}) = 1

)
= 1.

A further phase transition!
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Some remarks

We also have some partial results where kak does not
converge to 0 or ∞.

Can show: there exists distribution such that
1 the set of exceptional times has different upper and lower

Minkowski dimensions,
2 and the upper Minkowski dimension of {t ≥ 0 : ρt ≤ x}

depends on x.
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Case 2

Theorem (Damron-Hanson-Harper-L., ’21)

Assume
∑

k ak <∞. If further
∑

k k
7/8ak <∞ then a.s.

{t ≥ 0 : ρt =∞} = ∅.

The exponent 7/8 is not sharp. Can be replaced by 7/8− ε
for some universal constant ε > 0.

Wai-Kit Lam Critical FPP 12 / 15



Case 2

Theorem (Damron-Hanson-Harper-L., ’21)

Assume
∑

k ak <∞. If further
∑

k k
7/8ak <∞ then a.s.

{t ≥ 0 : ρt =∞} = ∅.

The exponent 7/8 is not sharp. Can be replaced by 7/8− ε
for some universal constant ε > 0.

Wai-Kit Lam Critical FPP 12 / 15



Case 2

Theorem (Damron-Hanson-Harper-L., ’21)

Assume
∑

k ak <∞. If further
∑

k k
7/8ak <∞ then a.s.

{t ≥ 0 : ρt =∞} = ∅.

The exponent 7/8 is not sharp. Can be replaced by 7/8− ε
for some universal constant ε > 0.

Wai-Kit Lam Critical FPP 13 / 15



Case 2

Theorem (Damron-Hanson-Harper-L., ’21)

Assume
∑

k ak <∞. If further
∑

k k
7/8ak <∞ then a.s.

{t ≥ 0 : ρt =∞} = ∅.

The exponent 7/8 is not sharp. Can be replaced by 7/8− ε
for some universal constant ε > 0.

Wai-Kit Lam Critical FPP 13 / 15



Idea of proofs

See screen/board.
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Thank you!
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