Dynamical critical first-passage percolation
in two dimensions

Wai-Kit Lam

National Taiwan University

TMS Annual Meeting, 1/17/2022

Wai-Kit Lam Critical FPP 1/15



Site percolation on T

o Consider the triangular lattice T. Fix p € [0, 1].
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Site percolation on T

o Consider the triangular lattice T. Fix p € [0, 1].
e Put states (7,) on the vertices: P(7, = 0) = p,
P(7, = 1) =1 — p. The states are independent.

@ Question: Does there exist an infinite O-cluster (an infinite
connected component that consists only of vertices with state
0)?
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Phase transition

@ There exists p. € (0, 1) such that

e if p < p., no infinite O-cluster a.s.;
e if p > p., there is an infinite O-cluster a.s.
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@ There exists p. € (0, 1) such that

e if p < p., no infinite O-cluster a.s.;
e if p > p., there is an infinite O-cluster a.s.

e p=np.'
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Phase transition

@ There exists p. € (0, 1) such that

e if p < pc, no infinite O-cluster a.s.;

e if p > p., there is an infinite O-cluster a.s.
° p=np
@ Facts:

o Essentially due to Kesten: p. =1/2 on T.
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Phase transition

@ There exists p. € (0, 1) such that

e if p < p., no infinite O-cluster a.s.;
e if p > p., there is an infinite O-cluster a.s.

e p= pc?
o Facts:

o Essentially due to Kesten: p. =1/2 on T.
o When p = p. = 1/2, no infinite O-cluster a.s.
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Dynamical percolation and exceptional times

@ Resample the states independently at rate 1. Write
Ty(t) = the state of v at time ¢.
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o Consider the set of exceptional times

{t > 0: there is an infinite O-cluster at time ¢}.

@ Intuitively, this set seems to be empty, but...
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Dynamical percolation and exceptional times

@ Resample the states independently at rate 1. Write
Ty(t) = the state of v at time ¢.

o Consider the set of exceptional times
{t > 0: there is an infinite O-cluster at time ¢}.
@ Intuitively, this set seems to be empty, but...

@ Garban—Pete—Schramm: this set has Hausdorff dimension
31/36 a.s.
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Another point of view

@ Back to site percolation.
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Another point of view

@ Back to site percolation.

e For an infinite path v = (v1, v, . ..), define its passage time by

T(vy) = ZTvi.
=2
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Another point of view

@ Back to site percolation.

e For an infinite path v = (v1, v, . ..), define its passage time by
(o)
i=2

@ Reformulation: Define the first-passage time to infinity
= inf{T'(7y) : v is an infinite path starting from 0}.
Is p < 00 a.s.?
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Another point of view

Back to site percolation.

For an infinite path v = (v1,v2,...), define its passage time by
oo
i=2

Reformulation: Define the first-passage time to infinity
= inf{T'(7y) : v is an infinite path starting from 0}.
Is p < 00 a.s.?

Equivalent to the original problem. Hence no if p < 1/2, yes if
p>1/2.

Wai-Kit Lam Critical FPP



A generalization

@ Instead of 0 and 1, we now assume (7,) are i.i.d. nonnegative
random weights. Write F'(t) = P(7, < t).
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A generalization

@ Instead of 0 and 1, we now assume (7,) are i.i.d. nonnegative
random weights. Write F'(t) = P(7, < t).

@ Recall
= inf{T'(+y) : 7y is an infinite path starting from 0}.

Still makes sense to ask: p < oo a.s.?
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A generalization

@ Instead of 0 and 1, we now assume (7,) are i.i.d. nonnegative
random weights. Write F'(t) = P(7, < t).

@ Recall
= inf{T'(+y) : 7y is an infinite path starting from 0}.

Still makes sense to ask: p < oo a.s.?
e Can show:
e F(0)<1/2=p=o00as.
o F(0)>1/2=p< oo as.
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A generalization

@ Instead of 0 and 1, we now assume (7,) are i.i.d. nonnegative
random weights. Write F'(t) = P(7, < t).

@ Recall
= inf{T'(+y) : 7y is an infinite path starting from 0}.

Still makes sense to ask: p < oo a.s.?
e Can show:
e F(0)<1/2=p=o00as.
o F(0)>1/2=p< oo as.
e F(0)=1/27
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A sharper phase transition

Theorem (Damron-L.-Wang, '17, simplified)

If F(0) = 1/2, then p < oo a.s. <:>ZF (1/2+27F) < .
k=2
Here, F~1(x) = inf{t : F(t) > x}.
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A sharper phase transition

Theorem (Damron-L.-Wang, '17, simplified)

If F(0) = 1/2, then p < oo a.s. <:>ZF (1/2+27F) < .
k=2
Here, F~1(x) = inf{t : F(t) > x}.

@ An easy example:
7y~ Ber(1/2) = F71(1/24+27%) =1 = p=ccas.
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A sharper phase transition

Theorem (Damron-L.-Wang, '17, simplified)

If F(0) = 1/2, then p < oo a.s. <:>ZF (1/2+27F) < .
k=2
Here, F~1(x) = inf{t : F(t) > z}.

@ An easy example:
7y~ Ber(1/2) = F71(1/24+27%) =1 = p=ccas.
o Intuition: F~1(1/2 +27%) smaller = the probability that
Ty & 0 is higher = easier to get to infinity in finite time.
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Dynamical critical FPP

e From now on, assume F(0) = 1/2.
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e From now on, assume F(0) = 1/2.

@ Resample each weight independently at rate 1. Again
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e From now on, assume F(0) = 1/2.

@ Resample each weight independently at rate 1. Again
Ty(t) := the weight of v at time ¢.

@ Define p; = p at time t.

@ Are there exceptional times?
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Dynamical critical FPP

From now on, assume F(0) = 1/2.

Resample each weight independently at rate 1. Again
Ty(t) := the weight of v at time ¢.

Define p, = p at time .

Are there exceptional times?

@ Two cases:
o Case 1: 3, F71(1/2+27F) = o0

Exceptional times: {t > 0: p; < co}.
o Case 2: Y, F71(1/2+27F) < ox.

Exceptional times: {t > 0: p; = co}.
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Case 1: Hausdorff dimension

Write a, = F~1(1/2 +27%).

Theorem (Damron-Hanson-Harper-L., '21)

Assume ), aj, = co. Then

dimp({t > 0: p < 0}) = — a.s.
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Case 1: Hausdorff dimension

Write a, = F~1(1/2 +27%).

Theorem (Damron-Hanson-Harper-L., '21)

Assume ), aj, = co. Then

dimp({t > 0: p < 0}) = — a.s.

@ Generalizes the result of Garban—Pete—Schramm.
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Case 1: Upper Minkowski dimension

Theorem (Damron-Hanson-Harper-L., '21)
Assume ), a = 00.
e If kay — oo, then for any z € [0, c0),

lim P

§—00

(dimm{t € 0,5]: pe < )

31

36

)
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Case 1: Upper Minkowski dimension

Theorem (Damron-Hanson-Harper-L., '21)
Assume ), a = 00.

e If kay — oo, then for any z € [0, c0),

lim P <dlimM({t €[0,5]: pr <)) = 31) —1

5—00 36

e Ifliminfy kay, = 0, then for any x € (0, 00),

lim P (dimy({t € [0,s] : ps <z}) =1) = 1.

S—00
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Case 1: Upper Minkowski dimension

Theorem (Damron-Hanson-Harper-L., '21)
Assume ), a = 00.

e If kay — oo, then for any z € [0, c0),

lim P <dlimM({t €[0,5]: pr <)) = 31) —1

5—00 36

e Ifliminfy kay, = 0, then for any x € (0, 00),

lim P (dimy({t € [0,s] : ps <z}) =1) = 1.

S—00

@ A further phase transition!
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Some remarks

@ We also have some partial results where ka; does not
converge to 0 or oco.
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Some remarks

@ We also have some partial results where ka; does not
converge to 0 or oco.
@ Can show: there exists distribution such that

@ the set of exceptional times has different upper and lower
Minkowski dimensions,

Wai-Kit Lam Critical FPP 11/15



Some remarks

@ We also have some partial results where ka; does not
converge to 0 or oco.
@ Can show: there exists distribution such that

@ the set of exceptional times has different upper and lower
Minkowski dimensions,

@ and the upper Minkowski dimension of {t > 0: p; < x}
depends on x.
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Theorem (Damron-Hanson-Harper-L., '21)

Assume 3", aj, < oo. If further 3", k7/8ay, < oo then a.s.

{t20:ps =00} =2.
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Theorem (Damron-Hanson-Harper-L., '21)

Assume 3", aj, < oo. If further 3", k7/8ay, < oo then a.s.

{t20:ps =00} =2.

@ The exponent 7/8 is not sharp. Can be replaced by 7/8 — ¢
for some universal constant € > 0.
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Theorem (Damron-Hanson-Harper-L., '21)

Assume 3", aj, < oo. If further 3", k7/8ay, < oo then a.s.

{t20:ps =00} =2.

@ The exponent 7/8 is not sharp. Can be replaced by 7/8 — ¢
for some universal constant € > 0.
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Idea of proofs

@ See screen/board.
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Thank you!
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