Dynamical critical first-passage percolation in two dimensions

Wai-Kit Lam

National Taiwan University

TMS Annual Meeting, 1/17/2022

• Consider the triangular lattice \mathbb{T} . Fix $p \in [0, 1]$.

< 注→ 注

- Consider the triangular lattice \mathbb{T} . Fix $p \in [0, 1]$.
- Put states (τ_v) on the vertices: $\mathbf{P}(\tau_v = 0) = p$, $\mathbf{P}(\tau_v = 1) = 1 - p$. The states are independent.

- Consider the triangular lattice \mathbb{T} . Fix $p \in [0, 1]$.
- Put states (τ_v) on the vertices: $\mathbf{P}(\tau_v = 0) = p$, $\mathbf{P}(\tau_v = 1) = 1 - p$. The states are independent.
- Question: Does there exist an infinite 0-cluster (an infinite connected component that consists only of vertices with state 0)?

- There exists $p_c \in (0,1)$ such that
 - if $p < p_c$, no infinite 0-cluster a.s.;
 - if $p > p_c$, there is an infinite 0-cluster a.s.

- There exists $p_c \in (0,1)$ such that
 - if $p < p_c$, no infinite 0-cluster a.s.;
 - if $p > p_c$, there is an infinite 0-cluster a.s.

•
$$p = p_c$$
?

- There exists $p_c \in (0,1)$ such that
 - if $p < p_c$, no infinite 0-cluster a.s.;
 - if $p > p_c$, there is an infinite 0-cluster a.s.

•
$$p = p_c$$
?

- Facts:
 - Essentially due to Kesten: $p_c = 1/2$ on \mathbb{T} .

- There exists $p_c \in (0,1)$ such that
 - if $p < p_c$, no infinite 0-cluster a.s.;
 - if $p > p_c$, there is an infinite 0-cluster a.s.

•
$$p = p_c$$
?

- Facts:
 - Essentially due to Kesten: $p_c = 1/2$ on \mathbb{T} .
 - When $p = p_c = 1/2$, no infinite 0-cluster a.s.

• Resample the states independently at rate 1. Write $\tau_v(t) =$ the state of v at time t.

- Resample the states independently at rate 1. Write $\tau_v(t) =$ the state of v at time t.
- Consider the set of exceptional times

 $\{t \ge 0 : \text{there is an infinite } 0\text{-cluster at time } t\}.$

- Resample the states independently at rate 1. Write $\tau_v(t) =$ the state of v at time t.
- Consider the set of exceptional times

 $\{t \ge 0 : \text{there is an infinite } 0\text{-cluster at time } t\}.$

• Intuitively, this set seems to be empty, but...

- Resample the states independently at rate 1. Write $\tau_v(t) =$ the state of v at time t.
- Consider the set of exceptional times

 $\{t \ge 0 : \text{there is an infinite } 0 \text{-cluster at time } t\}.$

- Intuitively, this set seems to be empty, but...
- Garban–Pete–Schramm: this set has Hausdorff dimension 31/36 a.s.

• Back to site percolation.

≣ >

- Back to site percolation.
- For an infinite path $\gamma = (v_1, v_2, \ldots)$, define its passage time by

$$T(\gamma) = \sum_{i=2}^{\infty} \tau_{v_i}.$$

- Back to site percolation.
- For an infinite path $\gamma = (v_1, v_2, \ldots)$, define its passage time by

$$T(\gamma) = \sum_{i=2}^{\infty} \tau_{v_i}.$$

• Reformulation: Define the first-passage time to infinity $\rho = \inf\{T(\gamma): \gamma \text{ is an infinite path starting from } 0\}.$ Is $\rho < \infty$ a.s.?

- Back to site percolation.
- For an infinite path $\gamma = (v_1, v_2, \ldots)$, define its passage time by

$$T(\gamma) = \sum_{i=2}^{\infty} \tau_{v_i}.$$

- Reformulation: Define the first-passage time to infinity $\rho = \inf\{T(\gamma): \gamma \text{ is an infinite path starting from } 0\}.$ Is $\rho < \infty$ a.s.?
- Equivalent to the original problem. Hence no if $p \leq 1/2,$ yes if p > 1/2.

• Instead of 0 and 1, we now assume (τ_v) are i.i.d. nonnegative random weights. Write $F(t) = \mathbf{P}(\tau_v \leq t)$.

• Instead of 0 and 1, we now assume (τ_v) are i.i.d. nonnegative random weights. Write $F(t) = \mathbf{P}(\tau_v \leq t)$.

Recall

 $\rho = \inf\{T(\gamma) : \gamma \text{ is an infinite path starting from } 0\}.$

Still makes sense to ask: $\rho < \infty$ a.s.?

- Instead of 0 and 1, we now assume (τ_v) are i.i.d. nonnegative random weights. Write $F(t) = \mathbf{P}(\tau_v \leq t)$.
- Recall

 $\rho = \inf\{T(\gamma) : \gamma \text{ is an infinite path starting from } 0\}.$

Still makes sense to ask: $\rho < \infty$ a.s.?

- Can show:
 - $F(0) < 1/2 \Rightarrow \rho = \infty$ a.s.
 - $F(0) > 1/2 \Rightarrow \rho < \infty$ a.s.

< 注→ …

• Instead of 0 and 1, we now assume (τ_v) are i.i.d. nonnegative random weights. Write $F(t) = \mathbf{P}(\tau_v \leq t)$.

Recall

 $\rho = \inf\{T(\gamma) : \gamma \text{ is an infinite path starting from } 0\}.$

Still makes sense to ask: $\rho < \infty$ a.s.?

- Can show:
 - $F(0) < 1/2 \Rightarrow \rho = \infty$ a.s.
 - $F(0)>1/2 \Rightarrow \rho < \infty$ a.s.

• F(0) = 1/2?

6/15

Theorem (Damron-L.-Wang, '17, simplified)

$$\begin{array}{l} \mbox{ If } F(0)=1/2, \mbox{ then } \rho < \infty \mbox{ a.s. } & \Longleftrightarrow \ \sum_{k=2}^{\infty} F^{-1}(1/2+2^{-k}) < \infty. \\ \\ \mbox{ Here, } F^{-1}(x)=\inf\{t:F(t)\geq x\}. \end{array} \end{array}$$

≣ ▶

Theorem (Damron-L.-Wang, '17, simplified)

$$\begin{array}{l} \mbox{ If } F(0)=1/2, \mbox{ then } \rho < \infty \mbox{ a.s. } & \Longleftrightarrow \ \sum_{k=2}^{\infty} F^{-1}(1/2+2^{-k}) < \infty. \\ \\ \mbox{ Here, } F^{-1}(x)=\inf\{t:F(t)\geq x\}. \end{array} \end{array}$$

• An easy example: $\tau_v \sim \mathrm{Ber}(1/2) \implies F^{-1}(1/2 + 2^{-k}) = 1 \implies \rho = \infty \text{ a.s.}$

御 とうきょう きょうしき

Theorem (Damron-L.-Wang, '17, simplified)

$$\begin{array}{l} \mbox{ If } F(0)=1/2, \mbox{ then } \rho < \infty \mbox{ a.s. } & \Longleftrightarrow \ \sum_{k=2}^{\infty} F^{-1}(1/2+2^{-k}) < \infty. \\ \\ \mbox{ Here, } F^{-1}(x)=\inf\{t:F(t)\geq x\}. \end{array} \end{array}$$

An easy example:

$$\tau_v \sim \mathrm{Ber}(1/2) \implies F^{-1}(1/2+2^{-k}) = 1 \implies \rho = \infty \text{ a.s.}$$

• Intuition: $F^{-1}(1/2 + 2^{-k})$ smaller \implies the probability that $\tau_v \approx 0$ is higher \implies easier to get to infinity in finite time.

• From now on, assume F(0) = 1/2.

臣

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

- From now on, assume F(0) = 1/2.
- Resample each weight independently at rate 1. Again $\tau_v(t) :=$ the weight of v at time t.

- From now on, assume F(0) = 1/2.
- Resample each weight independently at rate 1. Again $\tau_v(t) :=$ the weight of v at time t.
- Define $\rho_t = \rho$ at time t.

- From now on, assume F(0) = 1/2.
- Resample each weight independently at rate 1. Again $\tau_v(t) :=$ the weight of v at time t.
- Define $\rho_t = \rho$ at time t.
- Are there exceptional times?

8/15

- From now on, assume F(0) = 1/2.
- Resample each weight independently at rate 1. Again $\tau_v(t) :=$ the weight of v at time t.
- Define $\rho_t = \rho$ at time t.
- Are there exceptional times?
- Two cases:
 - Case 1: $\sum_k F^{-1}(1/2 + 2^{-k}) = \infty$.

Exceptional times: $\{t \ge 0 : \rho_t < \infty\}$.

• Case 2:
$$\sum_k F^{-1}(1/2 + 2^{-k}) < \infty$$
.

Exceptional times: $\{t \ge 0 : \rho_t = \infty\}.$

Write
$$a_k = F^{-1}(1/2 + 2^{-k})$$
.

Assume
$$\sum_k a_k = \infty$$
. Then

$$\dim_{\mathrm{H}}(\{t \ge 0 : \rho_t < \infty\}) = \frac{31}{36} \text{ a.s.}$$

Wai-Kit Lam Crit

Write
$$a_k = F^{-1}(1/2 + 2^{-k})$$
.

Assume
$$\sum_k a_k = \infty$$
. Then

$$\dim_{\mathrm{H}}(\{t \ge 0 : \rho_t < \infty\}) = \frac{31}{36}$$
 a.s.

• Generalizes the result of Garban-Pete-Schramm.

< ≣ >

Assume
$$\sum_{k} a_{k} = \infty$$
.
• If $ka_{k} \to \infty$, then for any $x \in [0, \infty)$,

$$\lim_{s \to \infty} \mathbf{P}\left(\overline{\dim}_{M}(\{t \in [0, s] : \rho_{t} \le x\}) = \frac{31}{36}\right) = 1.$$

Wai-Kit Lam Cri

• □ ▶ • • □ ▶ • • □ ▶

< 注→ 注

Assume
$$\sum_{k} a_{k} = \infty$$
.
• If $ka_{k} \to \infty$, then for any $x \in [0, \infty)$,
 $\lim_{s \to \infty} \mathbf{P}\left(\overline{\dim}_{M}(\{t \in [0, s] : \rho_{t} \le x\}) = \frac{31}{36}\right) = 1$.
• If $\liminf_{k} ka_{k} = 0$, then for any $x \in (0, \infty)$,
 $\lim_{s \to \infty} \mathbf{P}\left(\overline{\dim}_{M}(\{t \in [0, s] : \rho_{t} \le x\}) = 1\right) = 1$.

Wai-Kit Lam

- (三) → 三三

向下 く ヨト

Assume
$$\sum_{k} a_{k} = \infty$$
.
• If $ka_{k} \to \infty$, then for any $x \in [0, \infty)$,
 $\lim_{s \to \infty} \mathbf{P}\left(\overline{\dim}_{M}(\{t \in [0, s] : \rho_{t} \le x\}) = \frac{31}{36}\right) = 1$.
• If $\liminf_{k} ka_{k} = 0$, then for any $x \in (0, \infty)$,
 $\lim_{s \to \infty} \mathbf{P}\left(\overline{\dim}_{M}(\{t \in [0, s] : \rho_{t} \le x\}) = 1\right) = 1$.

• A further phase transition!

Wai-Kit Lam Crit

문 > 문

• We also have some partial results where ka_k does not converge to 0 or ∞ .

< 注→ 注

- We also have some partial results where ka_k does not converge to 0 or ∞ .
- Can show: there exists distribution such that
 - the set of exceptional times has different upper and lower Minkowski dimensions,

- We also have some partial results where ka_k does not converge to 0 or ∞ .
- Can show: there exists distribution such that
 - the set of exceptional times has different upper and lower Minkowski dimensions,
 - **2** and the upper Minkowski dimension of $\{t \ge 0 : \rho_t \le x\}$ depends on x.

Assume $\sum_k a_k < \infty$. If further $\sum_k k^{7/8} a_k < \infty$ then a.s.

$$\{t \ge 0 : \rho_t = \infty\} = \emptyset.$$

Wai-Kit Lam Critical FPP

■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → のへの

Assume $\sum_k a_k < \infty$. If further $\sum_k k^{7/8} a_k < \infty$ then a.s.

$$\{t \ge 0 : \rho_t = \infty\} = \emptyset.$$

The exponent 7/8 is not sharp. Can be replaced by 7/8 − ε for some universal constant ε > 0.

3

Assume $\sum_k a_k < \infty$. If further $\sum_k k^{7/8} a_k < \infty$ then a.s.

$$\{t \ge 0 : \rho_t = \infty\} = \emptyset.$$

Wai-Kit Lam Critical FPP

副 🖌 🖉 🖿 🖌 🖉 🕨 🖉 🖻

Assume $\sum_k a_k < \infty$. If further $\sum_k k^{7/8} a_k < \infty$ then a.s.

$$\{t \ge 0 : \rho_t = \infty\} = \emptyset.$$

• The exponent 7/8 is not sharp. Can be replaced by $7/8 - \varepsilon$ for some universal constant $\varepsilon > 0$.

크

Idea of proofs

• See screen/board.

● ▶ ● ●

Thank you!

문 🛌 🖻